
PROPRIETARY INFORMATION

The information contained in this document is the property of Northern Telecom. Except
as specifically authorized in writing by Northern Telecom, the holder of this document shall:
(1) keep all information contained herein confidential and shall protect same in whole or
in part from disclosure and dissemination to all third parties, and (2) use same for operating
and maintenance purposes only.

northern
telecom

Problem Determination Tools

Author(s): Mikhail Khodosh

Manager: Rod Bagg

Dept: 4Q22

Date: July 23, 1991

Issue: 3.0

Project Name: THOR

File Name: pdt.3.0.ud

Activity Id: DE0792

Release: 19

Keywords: PDT, THOR, Debugger, Problem Determination, RA, HLA,
HLD

Abstract: This document describes the THOR problem
determination strategy.

THOR Software Design Document PDT

Release 0.1 1 NT Proprietary

Revision History

ISSUE NO. DATE AUTHOR REASON FOR ISSUE

0.1 11/12/90 M. Khodosh RA initial release

1.0 12/21/90 M. Khodosh Issue for review

1.1 01/20/91 M.Khodosh Result from review

2.0 01/29/91 M.Khodosh HLA added

2.2 06/03/91 M.Khodosh Result from HLA review

References

(1) Debug Tool Proposal, 10/21/88, Karl Bernhardt, Bob Asdel, Robert
Stagmier, NT MTV

(2) Field Support Overlay Debug, User Manual, January/89, J. Pancevich

(3) VxWorks Programmer’s Guide, Volume 1, Wind River Systems, Inc.

(4) THOR High Level Debugger, User’s Guide, January/91, Charlene Yu,
Dept. 4Q22, NT MTV

(5) vxshell source code, Michael Thompson, Dept. 4Q21, NT MTV

(6) rlogind source code, Michael Thompson, Dept. 4Q21, NT MTV

(7) Pseudo tty driver, Software Design Document, Andy Phan, Dept.
4Q25, NT MTV

(8) SL1 Remote Function Call, Feature Specification, Denny Landaveri,
Dept. 4Q21, NT MTV

(9) C / SL1 Interface, Programmer’s Reference, Allen Aubuchon, Dept.
4Q22, NT MTV

THOR Software Design Document PDT

Release 0.1 2 NT Proprietary

1 Requirements Analysis (RA)

Problem Determination Tools (PDT) are intended to locate, examine and
eliminate problems (malfunctions) in the THOR system. They can be used
both locally and remotely at development time and run time. PDT also can
be used for profiling and statistics collection to analyze and improve system
characteristics.

1.1 Commercial Requirements
PDT should:

• provide current resident debugger functionality;

• support problem determination and fixing for all processes of THOR
operation (setting operating environment, SYSLOAD, INITIALIZE, call
processing, overlays);

• provide for remote operation the same functionality as for local
operation;

• ensure different levels of authorized access (access restriction
mechanism).

1.2 System Requirements
The primary function of PDT is to support THOR debugging and problem
fixing. The rest of the functions, described below, can be considered as
auxiliary functions, which are intended to provide services to the primary
one. Some of them are quite independent and can be viewed as a separate
tools. They are:

• remote operation support;

• macro capability;

• line editor;

• disk utilities;

• file transfer facilities.

Together with the debugging facilities these tools will constitute Problem
Determination Toolkit.

1.2.1 Access to the VxWorks

VxWorks, a powerful development environment, has a lot of facilities which
can be helpful in the problem determination process. It would be a good idea
to provide PDT users with an access to all the VxWorks features. However,
it is important to understand that the power of the feature makes it potentially
dangerous. That is why the PDT should split all the VxWorks features into
several groups and provide different levels of authorized access to these
groups (similarly to the rest of the PDT facilities).

THOR Software Design Document PDT

Release 0.1 3 NT Proprietary

1.2.2 Debugging

As a regular debugger PDT are to provide facilities to examine and change
THOR programs and data, and to manage THOR operating environment.
For these purposes PDT will implement several levels of user interface:

• call processing object level (Call Registers, TN, DN, ASD queues etc.);

• symbolic level (only for global symbols);

• assembler level;

• hardware level.

PDT should include most of the current resident debugger functionality plus
new facilities:

• SYSLOAD and INITIALIZE processes debugging;

• conditional breakpoints;

• extended macro capability;

• disassembler;

• one-line assembler;

• diagnostic patching;

• global symbol table maintaining;

• debugging session logging and backtracking;

• patch retention for emergency fixing.

1.2.3 Remote Operation

The following remote capabilities must be provided as part of PDT
operation:

• SYSLOAD and INITIALIZE;

• faceplate Indicators (LCD, Hex display, LEDs) read;

• initiating peripheral software (PSDL).

1.2.4 Macro Capability

Macro here is a sequence of debugging commands which can be executed
as one command at any break point, as part of the debugger starting
procedure and as part of the debugger ending procedure. Macro capability
must include:

• macro create and edit facility;

• macro library support facility;

• macro binding facility.

THOR Software Design Document PDT

Release 0.1 4 NT Proprietary

1.2.5 Line Editor

A simple line text editor should be provided to custom macro creation,
emergency patching, etc.

1.2.6 Disk utilities

A set of disk utilities have to be provided as a part of PDT. They will include
the following features:

• disk maintenance (FORMAT, INFO, LABEL, etc.);

• directory maintenance (MKDIR, CHDIR, RMDIR, etc.);

• file manipulation (COPY, DELETE, TYPE, etc.).

1.2.7 File Transfer and Software Distribution

PDT remote operation requires file transferring and manipulating activity.
File transfer should be provided for globals, patches, overlays, customer
database, etc.

File transferring together with the PDT remote operation extend
significantly PDT capabilities and can also be used as a base to create
Software Distribution System.

1.2.8 User Interface

Because the PDT will be invoked through VxWorks shell and will utilize
some of its debugging facilities, they should preserve their interaction style
and syntax.

1.3 Performance Requirements
Special provisions should be made to fit the following requirements:

• PDT should not degrade SL-1 performance;

• PDT must work on heavily loaded system.

1.4 Implementation Considerations
The PDT will be based on current resident debugger programs, which were
written in SL-1, and on VxWorks shell debugging facilities, which have “C-
oriented” program interface. Special provisions should be made to use
them together.

The new PDT modules are going to be written in C or SL-1, depending on
what is more efficient in each particular case.

The front-end routines should be isolated enough to be replaced when
porting to a different operating environment.

THOR Software Design Document PDT

Release 0.1 5 NT Proprietary

1.5 PDT Questionnaire
The list of functions indicated below have been submitted for reviewing to
the ETAS group in Richardson and to the FS group in Mountain View. They
were asked to indicate priority (High, Medium or Low) for provided
functionality. There was five people from Richardson and eight people from
Mountain View who had answered this questionnaire. Their answers and
summarized score for each function are shown here.

THOR Software Design Document PDT

Release 0.1 6 NT Proprietary

PROBLEM DETERMINATION TOOLS QUESTIONNAIRE

ETAS FSFUNCTION

Remote Init HHLLMLLLL-LL ML M L

Emergency Patching (680x0 opcode level) MHHHMH-MMHMH LM M M

Remote Sysload MMLLLLLLL-LL LL L L

Remote faceplate indicators manipulation HLMLLMLMM-ML LM L L

Debug Sysload MLHMLMMLL--L ML M L

Debug Init HMHMLMMLL--H HL M M

Macro capability LHHMHL-HHHHH HH M H

Conditional breakpoints HHMHMLHHHHHH HH H H

Diagnostic Patching HHHHHHHHHHHH HH H H

Patch retention for emergency patching MHHMHHHMM-MH LM H H

Sysload patching MLHLHMLLL--L ML M L

Global symbol table access LMMMHMHHHHHH MH M H

Resdb functionality MHHHHHHHHHHH HH H H

Global procedure replacement LHHMMHHHHHHH HH H H

Print formatted Trap Data Block HHMMHHLHHHHH MH M H

Set memory reference (prim/sec) MMHLMLHMH-HH LH M M

Print ACD queues MMMMMMMMHHHH MH M M

Print TTY port info MLMLMMLMM-MM MM M M

Print CR info for specific key on TN HHHMMHHMM-HH MH H H

Print Call Regs for ACTIVE CR & all keys & AUX CR HHHMHHHMM-HH HH H H

Save Trap Data Block on init MHHHHHHHHHHH HH H H

Remote switchover MLHLLLMLL--H ML M L

Database upload MLMLLLMMM--L MM M M

Secondary memory freeze LMHHHHHHH-HH MH H H

Memory dump to disk file MMMMLH-HH-HH MH M M

Memory dump analysis tools LMMLLHMHHHHH MH M M

THOR Software Design Document PDT

Release 0.1 7 NT Proprietary

2 Project Description (HLA)

2.1 Functional Overview
The PDT, when activated, create a special environment, which allows to
monitor any process in THOR operation. Conceptually, it can be viewed as
some kind of a shell.

The PDT functions can be classified as follows:

• managing THOR operating environment;

• Basic debugging facilities;

• Extended debugging facilities;

• service (auxiliary) functions and utilities.

In accordance with this classification the PDT will be viewed as if they
consist of four subsystems: Managing Operating Environment, Basic
Debugging Level functions, Extended Debugging Level functions and
Services.

2.1.1 Managing Operating Environment

This group will include the following functions:

• faceplate indicators read, write and clear;

• simulate Manual Reset for reload system;

• simulate Manual Interrupt for reinitialize call processing;

• check and change state of some of the hardware components.

2.1.2 Basic Debugging Level

This group will consist of the following subgroups:

• VxWorks shell facility;

• current RESDB facility, which is not call processing object oriented and
not covered by the VxWorks shell;

• one-line symbolic assembler / disassembler.

2.1.3 Extended Debugging Level

This group can be divided into the following subgroups:

• call processing object level debugging;

• SYSLOAD and INITIALIZE debugging;

• conditional breakpoints and macro binding capability;

• diagnostic patching retention;

• debugging session logging and backtracking.

THOR Software Design Document PDT

Release 0.1 8 NT Proprietary

2.1.4 Services

This group will provide auxiliary functions to serve some other facilities from
the groups above. It will also include several utilities which will also provide
PDT related services. The functional subgroups of this group are listed
below:

• line text editor;

• macro library support facility;

• global symbol table maintaining;

• customer database upload / download;

• software distribution support facility;

• disk utilities.

2.2 Normal Operation

2.2.1 Start-up

PDT should be spawned by the Root task prior SYSLOAD is spawned and
immediately activated if Start / Restart debugging is required. During their
initialization PDT should determine which serial port on CPU card will be
used as the operator console. After the starting PDT will perform regular
command interpreter functions and control all input from the operator
console or via rlogin.

2.2.2 Configuration file

PDT start-up process can be almost completely determined by the special
PDT configuration file. Among other things, configuration file allows to

• specify a serial port to be used as console;

• assign values to environment variables;

• specify names for macros to be bound with predefined breakpoints.

2.2.3 Predefined breakpoints

There are three predefined breakpoints known to PDT: at the SYSLOAD
start point, INITIALIZE start point and Call Processing start point. These
breakpoints are conventional means for the PDT to get control for
performing appropriate actions before a proper process is started. PDT
behavior at such breakpoints is defined by the macros, bound with them.
Names of these macros are predefined (or defined in the configuration file).

One of the most evident uses for this breakpoints is for diagnostic patching
purposes or for initiating the patch retention tool.

THOR Software Design Document PDT

Release 0.1 9 NT Proprietary

2.2.4 Command Input

Before SL-1 is started, PDT will use the serial port, chosen during
initialization for communication purposes. If necessary, PDT will provide for
switching to the other CPU card serial port with a special command.

After SL-1 is started, PDT can accept commands from the network serial
ports (through overlay supervisor) as well.

2.2.5 Security Levels

The primary purpose of the security mechanism providing by PDT is
information integrity and preventing denial of service. It will be achieved by
providing several levels of controlled access to PDT functionality. The
implementation model is based on assumption that each PDT command or

Ethernet

tty

OS Serial Driver

tty

Overlay Supervisor

tty

Pty Driver

rlogind

SLIP

tty

 SDI Driver

tty

TTYHAND

PDT

PDT Input

THOR Software Design Document PDT

Release 0.1 10 NT Proprietary

command option have fixed security attribute which can be are used to
determine whether a user can access this function.

There will be four different levels of access:

Informational level. Only information retrieval commands are allowed.

Debugging level. Regular PDT level. Most of PDT commands can be
used on this level.

System level. This level includes commands which cause
changes that would normally not be recoverable
even with system restart.

Super user level. PDT administrative level. This level allows to
change security attributes, passwords, reset or
restart PDT and so no.

2.3 Design Approach
As it can be seen PDT should include several different groups of functions.
For the designing purposes, it would be convenient to split PDT into several
independent subsystems, which will be integrated by the common and
consistent user interface.

Each subsystem can be designed separately and independently of the
others and will have its own implementation layers.

Nevertheless, it would be a good idea to have a common lowest-level layer
for all of the PDT subsystems (PDT kernel). It will make possible to
generalize functions and data structures, common for several subsystems.

THOR Software Design Document PDT

Release 0.1 11 NT Proprietary

3 Interfaces (HLA)

3.1 Context Diagrams

3.2 Description of Elements of Diagram

3.2.1 PDT Console

pdtConsole - terminator represents a logical device which will be used to
interact with PDT. This is composite device, which is created by PDT, using
standard input and standard output files.

consReq - data flow represents PDT commands or additional data, which
can be requested by PDT to complete execution of the processing
command.

pdtConsReply - data flow represents any data provided by PDT as a
response to the entered request.

pdtConsReply

pdtPatcherReq
patcher

consReq

IOSystem

Problem Determination Tools
Context-Diagram

PDT

0

patcherReply

SL1

VxWorks
pdtVxWorksReq

VxWorksReply

ASIClibraryASIClibReply

pdtASIClibReq

pdtConcole

VxWorksIndication

ASIClibIndication

SL1ReplypdtSL1Req

pdtIOReply

pdtIOReq

fileSystem
pdtFileSystReq

fileSystReply

THOR Software Design Document PDT

Release 0.1 12 NT Proprietary

3.2.2 Input-Output System

IOSystem - represents input-output facilities, which are needed for the PDT
operation. These facilities can be provided by IOP, SDI or Network software.

3.2.3 Patcher

patcher - represents a THOR Patcher program, which will be used for patch
retentions.

3.2.4 File System

fileSystem - represents THOR file system, which will provide basic features
for disk utilities operation, macro library support, and customer database
upload / download.

3.2.5 ASIC library

ASIClibrary - terminator represents a library of services provided for the
Application Specific Integrated Circuits (CMB, SRA, BIC).

3.2.6 SL-1 Software

SL1 - terminator represents call processing and related software
(SYSLOAD, INITIALIZE, overlays) which needs to be debugged or
monitored by the PDT.

3.2.7 VxWorks Operating System

VxWorks - terminator represents services provided by the VxWorks
Operating System.

3.3 Man Machine Interface
PDT are command driven. They will preserve the VxWorks interaction style
and syntax. As a temporary solution PDT can still allow to use an old-
fashioned mnemonics and syntax for the existing RESDB commands to
make a transition to a new interface easier.

3.3.1 Managing Operating Environment

Mnemonic Description

QENV [show all environment variables or

SECUR | current authority level

BRKPT | current breakpoint number

LOG | current log file name

MREF | current memory reference

MLIB | current macro library name

MECHO | current macro echoing setting

THOR Software Design Document PDT

Release 0.1 13 NT Proprietary

TTY] current TTY port and USER list

SETENV change value of an environment variable

SECUR | security level

MREF | memory reference

LOG | log file name

MLIB | macro library name

MECHO | macro echoing setting

TTY TTY port

MEM [OS | CP | SM] display memory map

CON [PORTA | PORTB] switch console to the required device

FIC lear LCD | LED | HXD clear faceplate indicator

FIRead LCD | LED | HXD read faceplate indicator

FIW rite LCD | LED | HXD <string> write string on faceplate indicator

3.3.2 Basic Debugging Level

3.3.2.1 Breakpoints, Stepping and Continuing

Mnemonic Description

BClear <brkptno> | ALL clear breakpoint(s)

BDisable <brkptno> | ALL disable break(s)

BEnable <brkptno> | ALL enable break(s)

BL ist <brkptno> | ALL list breakpoint(s) and its (their) attributes

BRet return from break mode (continue)

BSet <adr> set breakpoint

SInstr step (execute one machine instruction)

SOver step over a subroutine

3.3.2.2 Event Monitoring

Mnemonic Description

Event READ [<adr1> [-< adr2>]] define event to be monitored

WRITE [<adr1> [-< adr2>]]

EXEC [<adr1> [-< adr2>]]

EDisable <eventno> | ALL disable events(s)

EEnable <eventno>| ALL [STOP | enable event(s) with stop / nonstop

NSTOP] attribute setting

THOR Software Design Document PDT

Release 0.1 14 NT Proprietary

EL ist <eventno> | ALL list event(s) and its (their) attributes

ERet return from break mode (continue)

SInstr step (execute one machine instruction)

SOver step over a subroutine

CPEvent <etype> [<adr1> [- adr2>]] define CP event to be monitored

3.3.2.3 Display and Modify Memory

Mnemonic Description

Display [<adr> [<length>]] display memory

Modify <adr> modify memory

3.3.2.4 Assemble, Unassemble

Mnemonic Description

Assemble <adr> enter assembler mode

Unassemble [<adr> [n]] display raw program in assembler format

3.3.3 Call Processing Related Commands

3.3.3.1 Call Processing Loading and Initializing

Mnemonic Description

CPLOAD [DEBUG] start CP SYSLOAD

CPINIT [DEBUG] start CP INITIALIZE

3.3.3.2 Call Processing Break, Stepping, Continuing

Mnemonic Description

CPBRK [NOW] enter manual break mode immediately or

[WHEN] <event> set eventual breakpoint

CPSTEP Call Processing step

CPGO continue (return from CP break mode)

3.3.3.3 Call Processing Query

Mnemonic Description

CPTN <tn> show tn alternate form

<tn> CRG tn call register information

<tn> TRM tn transmission

<tn> KEY <key#> tn call register forkey#

CPCST <cust. no.> AQ show customer ACD queues

<cust. no.> DN customer DN translation

THOR Software Design Document PDT

Release 0.1 15 NT Proprietary

<cust. no.> DP customer data pointers

<cust. no.> RP customer route pointers

CPDSP CODE <glblno.><offs> display program memory

DATA data memory

MNS main stack

RAS return address stack

INI trap information

CPNWK <loop no.> [time slot] display network information

3.3.4 Macro Facility

Mnemonic Description

MACRO <macro name> macro definition

MBIND <brkptno> [<macro name> | macro binding

 MACRO]

MECHO [ON | OFF] echo commands from executing macro

MIF <condition> macro conditional statement

MLIB [<macro library>] define macro library

MSYNX <macro name> check macro syntax

MEND end of macro

MRUN <macro name> run specified macro

3.3.5 Services and Utilities

3.3.5.1 PDT Session Logging

Mnemonic Description

LOG [STATUS] | logging status

OPEN | open log file

CLOSE | close log file

ENABLE | activate logging

DISABLE | deactivate logging

FLASH] write log buffer to the file

3.3.5.2 Disk Maintenance

Mnemonic Description

FORMAT <disk> format disk space

THOR Software Design Document PDT

Release 0.1 16 NT Proprietary

CHKDSK <disk> show disk information

LABEL <disk> change volume label

VOL <disk> show volume label

BACKUP <disk> disk backup

RESTORE <disk> disk restore

DISKCOPY<disk1> <disk2> copy disk

DISKCOMP <disk1> <disk2> compare disks

3.3.5.3 Directory Maintenance

Mnemonic Description

CHDIR <path> change current directory

MKDIR <path> create new directory

PDIR <path> protect (lock) directory

UDIR <path> unlock directory

RMDIR <path> remove directory

TREE <path> show directory tree

3.3.5.4 File Manipulation

Mnemonic Description

COPY <file> <file> copy file

COMP <file> <file> compare files

DIR [<path>] list files

DELETE <file> delete file

MOVE <file> <file> move file

TYPE <file> type file

3.3.5.5 Miscellaneous

Mnemonic Description

DATE [<date>] set current date

TIME [<time>] set current time

EDIT [<filename>] edit text file

HELP [<command> | <topic>] display Help information

THOR Software Design Document PDT

Release 0.1 17 NT Proprietary

3.4 Exported Interfaces
As a rule all PDT functions will have conventional procedure interface and
can be called as an existing VxWorks routines, except if access to some of
them will be restricted.

THOR Software Design Document PDT

Release 0.1 18 NT Proprietary

4 Global Interactions

4.1 Project Interactions

4.1.1 SL-1 Interaction

PDT will interact with SL-1 when they need to perform SYSLOAD,
INITIALIZE or PSDL. Interaction with SL-1 will be required when conditional
breakpoints are using and probably also for some of the object level
debugging operation.

4.1.2 VxWorks Interaction

PDT will interact with SL-1 when they perform console read and write
operation, when they use VxWorks debugging and task management
facility, when they perform file transferring operation, and when they use or
maintain system symbol table.

4.1.3 Input-Output System Interaction

PDT will interact with the input-output system to perform operations which
involve I/O software and hardware.

4.1.4 File System Interaction

PDT will interact with the file system to perform all disk utility functions, to
upload and download customer database, to maintain macro library and
emergency patching files.

4.1.5 ASIC Library Interaction

PDT will use ASIC library functions for the following purposes:

• to read, write or clear faceplate indicators:

• to simulate Manual Reset and Interrupt events;

• to use hardware breakpoints facilities.

PDT will also use ASIC library functions if, for some reason, higher level
software does not operate properly or does not operate at all.

4.1.6 Patcher Interaction

PDT will interact with Patcher to initiate patch retention process.

4.2 Field Support
To be able to use all PDT features support organizations have to:

• train their staff with the PDT;

• train their staff with the 68030 architecture and Assembler language;

• have SUN workstations;

THOR Software Design Document PDT

Release 0.1 19 NT Proprietary

• have modems with reasonable speed.

THOR Software Design Document PDT

Release 0.1 20 NT Proprietary

5 High-Level Design (HLD)

5.1 Design Approach
As mentioned above, PDT should include several almost independent
groups of functions. For the design purposes, it would be convenient to split
PDT into several subsystems which can be classified as follows:

Functional subsystems. Each functional subsystem implements one major
group of PDT functions. The most important functional subsystems are:

pdtSL1Server - implements call processing related functions. As a
rule, all related programs residing in SL-1, are
called using RFC facilities and are executed during
the SL-1 provided time slice.

pdtDbgServer - implements basic debugging facilities. It includes
breakpoint functions, event monitoring functions,
Display and Modify memory functions, Assemble
and Unassemble functions.

pdtDiskUtilities-implements disk and file manipulation functions.

Shell subsystem. Implements user interface and serves as a main control
program coordinating functional subsystems. Because PDT is a multiuser
system, there can be several shell instances at a time.

Auxiliary subsystems. Auxiliary subsystems provide services for the rest of
subsystems. Although all these subsystems are conceptually viewed as
independent, sometimes it is more efficient to implement some of their
features as part of other subsystems. Thus, some macro facilities should
be parts of Shell or Debugger.

pdtShClassCtl - provides shell control facilities.

pdtStart - provides start-up and restart functions.

pdtLogin - provides login/logout facilities.

pdtMacro - implements PDT macro facilities.

pdtEnv - provides PDT common data structures and
related functions.

5.1.1 Assumptions

1. The existing VxWorks rlogin support facility must be extended to provide
multiple shell support in the same way as it was done by Michael
Thompson in [6].

5.1.2 Dependencies

1. The VxWorks debugging facilities must be defined in the VxWorks
configuration file configAll.h.

THOR Software Design Document PDT

Release 0.1 21 NT Proprietary

5.2 Flow Diagram

Figure 1. PDT - Flow Diagram

pdtShell

Problem Determination Tools
0

pdtShClassCtl

3

pdtGlobalEnv

shellCtlReq

pdtDiskUtilities

5

shellCtlReply

PDT.CFG file

pdtStartCmd

countdownInterrupt

pdtStart

1

abortShellSeq pdtLogin

2

rloginCmd

resdbStartCmd

pdtDbgServer

7

dbgServerReply

pdtDbgReq

pdtShell
pdtShell

4

pdtShell

pdtReply

pdtCommand

pdtMacroLib

pdtSL1Server

6

pdtSL1Req

SL1ServerReply

pdtDbgServerInit

conShellParms
shellParms

dbgEventndication

THOR Software Design Document PDT

Release 0.1 22 NT Proprietary

5.3 Common Data Stores

5.3.1 pdtGlobalEnv

5.3.1.1 Data Entities and Interfaces

/* pdtGlobalEnv.h */

/* Declarations for the PDT global data */

#define INIT_START 1 /* initial (booting) start */

#define COLD_START 2 /* cold restart */

#define WARM_START 3 /* warm restart */

#define PRIME_MEM 1 /* primary memory reference*/

#define SECND_MEM 2 /* secondary memory reference*/

#define DEFAULT_MLIB /pdt/maclib

#define DEFAULT_LOG /pdt/PDT.LOG

struct pdtGlobalEnv

{

int pdtGblStartType; /* type of PDT start / restart */

int pdtGblMemRef; /* current memory reference */

FNAME pdtGblLogFname; /* PDT log file name */

FD pdtGblLogFd; /* PDT log file Fd */

PATH pdtGblMlibPath; /* PDT maclib directory path */

};

VOID pdtStartTypeSet();

int pdtStartTypeGet();

VOID pdtMemRefSet();

int pdtMemRefGet();

int pdtLogFd();

char *pdtLogName();

char *pdtMlibPath();

THOR Software Design Document PDT

Release 0.1 23 NT Proprietary

5.4 pdtStart Subsystem

5.4.1 Data Entities

shellParms - Input fd, Output fd, Error fd and security level value.

5.4.2 Processes

5.4.2.1 pdtStart

This routine is used to perform initial PDT startup and to restart PDT when
a RESTART command is issued or a special watchdog interrupt event
occurs.

int pdtStart (startType)

startType = {INIT, COLD, WARM};

INPUT CONTROL FLOWS:

pdtStartCmd : functionCall

OUTPUT CONTROL FLOWS:

pdtShClassInit : functionCall

pdtShCreate : functionCall

pdtSL1ServerInit : functionCall

INPUT DATA FLOWS:

countDownInterrupt : countDownSequence

PDT.CFG file : file

startType : pdtStartTypes

OUTPUT DATA FLOWS:

pdtGblEnv : structure

DESCRIPTION:

switch (startType)

{

case WARM_START:

break;

case INIT_START:

if <pdtCountDowned> {<suppress SL1 start>};

pdtSL1ServerStart(); /* initialize SL1 server */

pdtShClassInit(maxShells); /* initialize shell Class */

startRlogindTask();

startDbgServer();

THOR Software Design Document PDT

Release 0.1 24 NT Proprietary

startSL!Server();

readPdtConfigFile();

setPdtAbortShellFunc();

startFirstShell();

break;

case COLD_START:

stopRlogindTask();

stopAllShellTasks();

stopDbgServer();

stopSL1Server();

readPdtConfigFile();

setPdtAbortShellFunc();

startRllogind();

startFirstShell();

break;

}

END

5.4.3 Issues for the pdtStart Subsystem

1. What are the differences between INIT, COLD and WARM start of PDT?
What if environment variables were changed an it is necessary to restart
PDT (should we use actual values original PDT.CFG file?

2. Do we need a REBOOT PDT command to initiate OS reboot (manual
Reset simulation)?

3. Do we need a CPRESTART (CPINIT) command to initiate call
processing restart (manual Interrupt simulation)?

4. Is SYSLOAD going to be separate task? Do we still need a CPLOAD
command?

5. Countdown interrupt? Is it possible to suppress SL1 starting during OS
reboot?

6. Watchdog interrupt? How it will affect PDT?

THOR Software Design Document PDT

Release 0.1 25 NT Proprietary

5.5 pdtLogin Subsystem

Figure 2. PDT - pdtLogin Subsystem

5.5.1 Data Entities

rloginCmd - UNIX rlogin command.

resdbStartCmd - ’$$’ - former RESDB start sequence.

abortShellSeq - ’^C’ - character sequence, which causes shell abort
and restart.

shellParms - Input fd, Output fd, Error fd and security level value.

5.5.2 Processes

5.5.2.1 pdtRlogind

This routine will run as an independent process and must replace the
existing VxWorks rlogin support. The most important new features are
multiple shell support facilities. This routine seems to be very similar to the
rlogin daemon "rlogind" written by Michael Thompson [6].

5.5.2.2 pdtResdbStart

This routine will be called by the pdtSL1Server, when ’$$’ character
sequence is entered from any SL1 terminal. In its turn, it will call a
pdtShCreate function to create shell with this terminal as a communication
device.

5.5.2.3 pdtShellAbort

This routine will be called by the device driver when the shell abort
character sequence (^C) is entered. In its turn, it will call a pdtShCreate

pdtShClassCtl
3

pdtRlogind

2.1

rloginCmd

pdtResdbStart

2.2

resdbStartCmd

pdtShellAbort

2.3

pdtShCreateabortShellSeq

pdtShCreate

pdtShCreate

THOR Software Design Document PDT

Release 0.1 26 NT Proprietary

function to create new shell for the corresponding device. If any shell has
been created for this device, it will be aborted before new shell starts.

5.5.3 Issues for the pdtLogin Subsystem

1. Is it necessary to have a meaningful user ID in rlogin command?

2. Is it necessary to ask for a password in rlogin command?

3. How and when should passwords for different security levels be set and
changed?

4. How can the SL1 server get ty fd and provide them to PDT?

5. How can pdtShellAbort function get fd for the corresponding device?

THOR Software Design Document PDT

Release 0.1 27 NT Proprietary

5.6 pdtShClassCtl Subsystem

Figure 3. PDT - pdtShClassCtl Subsystem

5.6.1 pdtShell Object Class

At this level it is convinient to build an object class with the pdtShell as a
class member. The following is this object class description:

CLASS pdtShell

{

PRIVATE:

struct pdtShTask

{

pdtShClassCtl
3

pdtShSecGet

3.2

pdtShTaskSpawn

pdtShTaskTbl

pdtShInToId

3.6

shInFd

pdtShClassInit

3.1

maxShells

pdtShSecSet

3.3

shSecLvl

pdtShIdToIn

3.5

pdtShTaskDelete

shTaskID

shSecLvl

shTaskID

shInFd

shSecLvl

shSecLvl

shInFd

shTaskID

pdtShCreate

3.4

shellParms

3.7

shTaskID

pdtShDelete

shTaskID

THOR Software Design Document PDT

Release 0.1 28 NT Proprietary

int pdtShTaskID; /* shell task ID */

int pdtShInFd; /* shell task Standard Input Fd */

int pdtShOutFd; /* shell task Standard Output Fd */

int pdtShErrFd; /* shell task Standard Error Fd */

int pdtShSecLvl; /* shell current security level */

};

int PDTSH_TBL_LEN 10 /* shell table length !!magic */

int PDTSH_MAX 4 /* max number of shells !!magic */

structure

 pdtShTbl pdtShTask [PDTSH_TBL_LEN] /* shell task table */

PUBLIC:

pdtShClassInit (maxShells); // class initialization function

pdtShCreate (inFd, outFd, errFd, secLvl); // constructor function

pdtShDelete (shTaskID); // destructor function

pdtShSecSet (shTaskID, shSecLvl); // set security level function

pdtShSecGet (shTaskID); // get security level function

pdtShIdToIn (shTaskID); // get shell input fd function

pdtShInToID (shInFd); // get input fd for the shell

}

Notes.

1. PDTSH_MAX defines the maximum number of shells by default. This
value can be redefined in the PDT.CFG file and must be used in the
pdtShClassInit function call.

2. Security level 0 will cause VxWorks shell spawning.

THOR Software Design Document PDT

Release 0.1 29 NT Proprietary

5.7 pdtShell Subsystem
PDT will allow multiple shells running simultaneously. These shells are
running almost independently and the only thing to care about is the mutual
exclusion in using some of the debugging facilities. The mutual shell
arbitration will be based on the shell security level attribute. The shell
routines code seems to be very similar to the "vxshell" code written by
Michael Thompson [5].

Figure 4. PDT - pdtShell Subsystem

5.7.1 Data Entities

pdtGlobalEnv - This data store is described above in the Common
Data Stores section. It will be used to initialize
corresponding fields in the shell local data base. Later

2.12.1

pdtShell
4

shInit

4.1

pdtGlobalEnv pdtShLocalDB

pdtMacroLib

pdtReply

pdtCmd

shCmdInput

4.2

shCmdInterpr

4.3

parsedCmd

THOR Software Design Document PDT

Release 0.1 30 NT Proprietary

on, these local values can be changed while global
values have to remain unchanged.

pdtLocalDb - Contains all shell variables. It also includes copies of
global variables which can be changed locally by the
shell user.

Because all functional subsystems are going to be
implemented as reentrant programs, the local data
base must allocate memory for their variables.

pdtCmd - Any PDT command as specified in the PDT Command
Reference. See Appendix A for details.

pdtMacroLib - Directory which will be used to look for PDT shell
scripts.

pdtReply - Results of the PDT command execution or error
message.

parsedCmd - Lexically correct PDT command which is broken into
tokens. It is a good idea to have all expression
calculations to be already done at this point.

5.7.2 Processes

5.7.2.1 shInit

This routine will process shell input parameters, initialize shell local
variables and copy values of global variables to the local data base.

5.7.2.2 shCmdInput

This routine provides a main shell loop which includes:

• issuing of the PDT prompt;

• entering the next PDT command;

• command parsing and token list creating (expressions calculation
should be done here);

• command interpreter calling to perform the entered command;

A normal exit from the command input loop is made by the shell exit
command.

5.7.2.3 shCmdInterpr

This routine accepts a orrect PDT command and, based on the command
name will choose proper subroutine (executive subroutine) to perform the
required action. Sometimes it is necessary to take in account not only the
command name but also one or more command parameters to make proper
selection. Usually it may happen when different command options require
different security levels for execution.

THOR Software Design Document PDT

Release 0.1 31 NT Proprietary

Executive subroutines can reside in the same module (pdtCmdIntrpr) or be
part of one of the functional subsystem. In any case, the executive
subroutine returns control to the main loop program. All data exchanges
should be done by means of the function call parameters and the shell local
data base.

THOR Software Design Document PDT

Release 0.1 32 NT Proprietary

5.8 pdtSL1Server Subsystem
In terms of the “SL1 Remote Function Call” document written by Denny
Landaveri [8], this subsystem is part of the SL1 Server, and PDT shells are
clients requesting services from this server.

5.8.1 Data Entities

5.8.2 Processes

5.8.2.1 On the SL1 side

A Global Procedure name is pdtServer .

An Application ID is PDT.

There will be the following major functions (operations) provided by the
Server to the PDT Application:

• pdtShowTN (function ID is SHOW_TN);

• pdtShowCust (function ID is SHOW_CUST);

• pdtShowNwk (function ID is SHOW_NWK);

• pdtDisplay (function ID is SHOW_MISC).

It looks like that the former RESDB code could be used to implement most
of these functions. The only change required is to replace former output
procedures. The new procedures should accept output device Fd as an
input parameter and direct all output to that device.

5.8.2.2 On the PDT side

There is a corresponding routine for each SL1 Server major function on the
PDT side. All these routines perform additional command parameters
checking, create an input parameter list for the server call and then call SL1
Server to perform a required operation.

5.8.3 Issues for the pdtSL1Server Subsystem

1. Is it necessary to call pdtSL1ServerInit, during PDT restart? Does any
type of PDT restart should do it?

2. It is necessary to rewrite RESDB output procedures to make them write
data directly to the shell standard output device. This device Fd will be
passed to the pdtSL1Server by the pdtShell when it requests any
service. (This information should be placed into the shell local DB).

3. How can SL1Server provide for PDT the following operations: CPBRK,
CPSTEP, CPGO?

THOR Software Design Document PDT

Release 0.1 33 NT Proprietary

5.9 pdtDebug Subsystem
This subsystem is to provide facilities which allow to suspend (break)
regular task execution, perform necessary debugging and diagnostic
actions, and then continue regular task execution again. For this purposes
PDT uses breakpoints. Breakpoint is defined by the pair (event, action) and
usually acts as follows:

1. When the specified event occurs, task is suspended.

2. An action is performed, if any was bound with this event.

3. Some additional actions can be specified manually by the user
(operator).

4. Task continues its execution.

5.9.1 pdtDbgEvent Object Class

It is convinient to build an object class with the pdtDbgEvent as a class
member. The following is this object class description:

CLASS pdtDbgEvent

{

PRIVATE:

struct pdtEvent

{

int pdtEvtType; /* event type: READ, WRITE, EXE */

int pdtEvtTask; /* task ID, for task related events, or 0 */

int pdtEvtAddr1; /* event region starting address */

int pdtEvtAddr2; /* event region ending address */

int pdtEvtInstr; /* instruction, substituted by trap code */

int pdtEvtShell; /* shell ID to interact to */

MNAME pdtEvtMacro; /* macro name if defined */

ENAME pdtEvtName; /* event optional name */

short pdtEvtFlags /* flags */

};

int EVT_TBL_LEN 16 /* event table length !!magic */

int EVT_MAX 16 /* max number of events by default */

structure pdtEvtTbl pdtEvent [EVT_TBL_LEN] /* event table */

PUBLIC:

pdtEvtClassInit (maxEvents, evtHandler); /* class initialization function */

THOR Software Design Document PDT

Release 0.1 34 NT Proprietary

pdtEvtDefine (evtType, evtAddr1, evtAddr2); /* constructor function */

pdtEvtDelete (evtNo); /* destructor function */

pdtEvtEnable (evtNo); /* event enable function */

pdtEvtDisable (evtNo); /* event disable function */

pdtEvtActionBind(evtNo, macName); /* bind action function */

pdtEvtActionGet (evtNo); /* get action macro function */

pdtEvtNameSet (shInFd); /* define event symbolic name */

pdtEvtNameToNo (shInFd); /* get event number */

pdtEvtNoToName (shInFd); /* get event symbolic name */

}

5.9.2 Issues for the pdtDebug Subsystem

1. New PDT command should be added to specify which task will be under
debugging. Does it mean that only one task can be debugged at a time
by PDT?

THOR Software Design Document PDT

Release 0.1 35 NT Proprietary

6 Testing (HLD)

6.1 Unit test

6.1.1 PDT Starting

1. Start PDT from Root Task.

2. Start PDT from VxWorks shell.

3. Use .CFG files to setup PDT environment.

6.1.2 Expression Evaluation and Syntax Checking

1. Use arithmetic expressions and check reported results.

2. Use expressions involve names from Global symbol table. Verify results.

3. Use expressions with indirect references to values. Verify results.

4. Use expressions with incorrect syntax. Verify error reported.

5. Use undefined PDT command. Verify error reported.

6. Use PDT commands with incorrect operands type. Verify errors
reported.

7. Use PDT commands with wrong number of operands. Verify errors
reported.

6.1.3 Managing Operating Environment

1. Use QENV command to display all environment variables values.

2. Use SETENV command to change value of several environment
variables. To verify changes display values of these variables.

3. Use MEM command to display memory map.

6.1.4 Basic Debugging Level

1. Use BSet command to set breakpoint. Verify result by using of the BList
command.

2. Use BEnable, BDIsable, BClear commands and verify results by using
of the BList command.

3. Use Display command to display contents of memory.

4. Use Modify command to change contents of memory. Verify result by
using the Display command.

5. Use Unassemble command to display program code.

6. Use Assemble command to create a piece of program code. Verify result
by using of the Unassemble command.

THOR Software Design Document PDT

Release 0.1 36 NT Proprietary

6.1.5 PDT Session Logging

1. Use LOG STATUS command to check name and status of log file before
and after each logging related commands.

2. Use LOG OPEN command to open log file. Enter several PDT
commands which have to be placed to the log file.

3. Use LOG DISABLE command to deactivate logging. Enter several PDT
commands which should not be placed to the log file.

4. Use LOG ENABLE command to activate logging. Enter several PDT
commands which have to be placed to the log file.

5. Use LOG CLOSE command to close log file. Check if all previous
commands was performed properly by using TYPE utility to display log
file.

6.1.6 Disk Maintenance

1. Use CHKDSK command to check disk information after FORMAT and
LABEL commands to verify results.

2. Use FORMAT command to format floppy disk.

3. Use VOL command to display floppy disk volume name.

4. Use LABEL command to change floppy disk volume name. Verify result
by using of VOL or CHKDSK command.

6.1.7 Directory Maintenance

1. Use TREE command to check directory tree after CHDIR, MKDIR and
RMDIR commands to verify results.

2. Use CHDIR command to establish pathes to different directories.

3. Use MKDIR command to create new directories.

4. Use RMDIR command to remove directories created.

6.1.8 File Manipulation

1. Use DIR command to check disk files after COPY, DELETE and MOVE
commands to verify results.

2. Use COPY command for any existing file to create new one with
different name.

3. Use MOVE command to move file to another directory and to rename it.

4. Use DELETE command to delete file.

THOR Software Design Document PDT

Release 0.1 37 NT Proprietary

6.1.9 Macro Facility

1. Use MBIND command to bind breakpoint with an existing macro. Verify
result by using BList command.

2. Use MBIND command to create and bind in-line macro with the
breakpoint. Verify result by using BList command.

3. Use MLIB command to change current using macro library. Verify result
by using QENV MLIB command.

4. Use MSYNX command to check syntax of the macro in macro library.

5. Use MRUN command to execute macro from macro library.

6.1.10 Miscellaneous

1. Use EDIT command to create new text file. Use TYPE command to
verify result.

2. Use HELP command to get common help information (help topics) and
to get help information on single commands.

