
Version 1.1 Part III: Software Architecture

1. The computing platform
The platform is the combination of hardware, firmware, and software that
provides the foundation upon which the rest of the M1 can do its job. The
platform provides a robust, efficient environment for applications to do their
stuff, and abstractions to cushion them from the harsh realities of evolving
processor idiosyncrasies.

When our systems go down, there are tremendous potential costs to our
customers, and ultimately to Nortel: lost revenue, legal costs, lost customers,
replaced equipment, manpower (including sending people to site, investigation,
patching, etc.), and potentially even human costs (for instance, when the M1
serves a hospital). While all designers can help minimize software faults, most of
the responsibility for containing the effects of faults, providing graceful
degradation, or at least recovering from total outages rests on the platform team.

This chapter will focus on the Call Processor platform, for the most part ignoring
other software platforms within the M1 system. This is partly because the bulk
of the M1 software lives on the CP, partly because the platforms on several of
the adjacent processors might reveal similar lessons, and partly because I don’t
know anything much about the other ones (like MAT, SCCS, EIMC, etc.).

1.1 What’s in a platform?
The platform doesn’t really contain anything customers know they want. Its job
is to enable designers to create applications which live up to the pervasive
requirements discussed in Chapter 2. A few ingredients are critical:

• Multitasking – (but with fast context switches) to simplify designs
• Mutual exclusion – to prevent other tasks from running some of the time
• Suitable scheduling – to help the tasks work sensibly together
• Redundancy – so the system is always available

Part III: Software Architecture Version 1.1

• Fault handling – some degree of fault tolerance, plus diagnosis and (self)
repair

• Cold/warm restart – for initial installs, and when fault handling doesn’t
suffice

• Communication with other local nodes – synchronous and asynchronous
• Timers – lower overhead delays and wake-ups, plus reliable time of day
• Memory management – including hardware protection
• Device drivers – disk, tape, terminal, and maybe others
• System configuration – because we support many different setups
• Live software upgrade – so that we can install new features without

causing outages
• Patching – so we can fix the new features
• Debuggers – hopefully including a set of field-safe tools
• Reliability – because our customers have no tolerance for down-time
• Low overhead – both in terms of real-time and code bulk
• Bearable cost – because customers want to buy features, not platforms

Some other services are just “nice-to-haves”, because we can work around their
absence or create them ourselves on top of the platform:

• Third-party software – the larger the available selection, the better
• CORBA – to let the third-party stuff talk to each other
• Quality of service selectability for control:

• Reliable, Flow Controlled (Slow)
• Try-once, Overload Controlled (Fast)

• Name mapping
• Protocol versioning

And a few services which are standard on some operating systems we would
prefer to live without:

• GUI libraries – our GUIs are all off-board for performance reasons
• Garbage Collection – none are quite fast enough (yet)
• Web Browsers – gimme a break

Not surprisingly, we have cobbled together a system that delivers reasonably well
on the must-haves, if less convincingly on the would-be-nices, and avoids the
rather-nots. Keeping the cost bearable and the code bulk down will probably
always mean not having all of the bells and whistles.

Version 1.1 Part III: Software Architecture

Although our platform is now based on VxWorks running on an MC680x0, this
should be viewed as the current commercial platform, rather than the only or final
solution. As designers, we should expect to see at least two, and possibly three
platforms in the near future. Nonetheless, real-time code, even good, OOed,
layered, concerns-all-separated, real-time code, is ultimately not vague enough to
let us completely ignore the specifics of our platform. The following sections
attempt to impart a broad understanding of how VxWorks’ idiosyncrasies affect
our designs, and also how our code might be written to also allow reasonably
painless porting to other OSs.

Part III: Software Architecture Version 1.1

Why should we even have a platform team?
Years ago, we built a processor which was so darned unimprovable we called it
“Omega”. Right. That was four generations ago, and it seems unlikely we will ever
get a “last step” in processor evolution, but it was the last time we tried to have a CPU
built just for M1. Somebody noticed that there are other organizations (eg: Intel,
Motorola, etc.) whose CPU production volumes and corresponding R&D efforts are
so much huger than ours that it seemed silly and unnecessary to compete with them.

The next logical step was the operating system: if we don’t run on a scratch-built chip,
why do we need to have a home-brewed Real-Time Operating System? The answer
turned out to be that lots of commercial operating systems were a poor fit for our
product. We need our platform to be small, fast, and fault-tolerant. It is perhaps
good news that hardly anyone fills our needs perfectly, but we are now able to buy
pieces of the solution that do a lot of the work for us. The theory goes that we can
then tune them, or maybe layer things on top of them, to end up with a good enough
platform that has two strategic advantages over the old one: it’s cheaper, and we can
buy some applications off the shelf which will already run on them.

By induction, we could simply buy each successive layer, including the applications,
and all go surfing. The good news (job-security wise) is that we seem to be good
enough at solving some of the market requirements that it’s worth keeping the R&D
shop open. However, more and more of our work will leverage externally-designed
products.

1.2 Vanilla VxWorks
Wind River Systems provides pretty good VxWorks documentation. In
particular, the Reference Guide gives an exhaustive API description, and the
Programmers Guide gives instructions on how to use it. The Training
Workshop notes are also good, but are best understood with the accompanying
lectures. Unfortunately, collectively these three documents are about six inches
thick.

This section is an attempt to get you started with a lower overhead. It’s not a
substitute if you need to be an expert, but it’s probably good enough for a
typical designer. For the next level of detail, see Inside Thor.

Version 1.1 Part III: Software Architecture

This section attempts to distill the most crucial VxWorks1 essence into a
manageable volume, and adds some specific rules for use within the M1 context
and a few juicy stories about how things have gone wrong when these rules
weren’t followed.

VxWorks is a commercial real-time operating system suite which runs in (among
other things) JPL’s Pathfinder Mars landing vehicle, and the Meridian 1. Not
unlike the nuclear missiles in which it also runs, VxWorks was built for speed but
not comfort—latency is known and controllable, but major design decisions
consistently favored performance over safety.

VxWorks is based on preemptive priority multitasking, simplifying control of
concurrent transactions by allowing solutions to mirror the real-world problems
they’re modeling.

The VxWorks kernel is a set of normal subroutines, as opposed to the other
common types of kernel: supervisor mode subroutines, a set of tasks, or a fried
chicken pitch-man (oops, sorry). In VxWorks, all tasks run in supervisor mode
(remember, performance over safety). Therefore, application code and Interrupt
Service Routines (ISRs) can invoke the kernel with normal subroutine calls,
keeping the overhead extremely low.

Even though we now (since CP2/Rls21) use VxVMI to manage memory
protection, tasks still share a single flat address space. This gives us fast inter-task
messaging and fast context switches, but it means bad pointers in one application
can end up trampling store belonging to any task. Also, there is no explicit
detection of memory leaks, and certainly no garbage collection (speed, not
comfort).

1.2.1 Tasks
Task implementation is also very light-weight: each task is represented by a Task
Control Block (TCB) and a stack. Apart from the full register save, task context
switching is not much more expensive than a subroutine call. On the other hand,
stack crashes are not detected (yet again, performance over safety).

1 For the curious, the name “VxWorks” comes from the early days when Wind River made a toolkit that

“worked” with Microtec’s VRTX real-time operating system, although VxWorks no longer contains
any of the original VRTX code. Nobody admits to knowing what VRTX stands for anymore…

Part III: Software Architecture Version 1.1

Why might we prefer stack overflow detection?
Outside of North America, public dial plans are seldom the regimented 3+3+4 digits
we’re used to seeing, and variable-length directory numbers are common. A site in
England (let’s call it Big Important American Bank) did a configuration change to
handle International digit processing. The problem was that the software which does
translations is recursive, and the depth of recursion is dependent on the numbering
scheme, so that even though it tested out fine at home, it blew up in the field.

It gets worse. The stack overflowed into protected memory, and the processor simply
stopped dead during the next recursion when it tried to write to the stack. The
watchdog then started barking, and the CPU did a forced switchover. This happened
erratically, but often, so it looked like we suddenly had huge hardware problems.
Tracking this down to its root cause ended up being very expensive.

Moral: If you create a new task, make sure to allocate a generous stack. Not only
will it be used to store all of the locals and registers for your own procedures, but also
for any operating system procedures that you invoke. Worse than that, most interrupt
handlers also use your stack space. So allocate what you think is more than you need,
test your code thoroughly (ideally under a reasonably heavy traffic load) and then use
the VxWorks checkStack tool to make sure there was still a comfortable buffer of
unused space at the top of your stack. Remember, stack overflows aren’t detected, so
if you get this wrong, your code will still work. You’ll just have trampled somebody
else’s data, which gets very tough to debug. A bigger stack doesn’t cost any more real-
time, and memory is cheap.

Bonus advice about stacks: Never return a reference to a procedure’s local
variables. Locals are kept on the stack, which gets reused by other procedures after
you return. The simplest case actually works: in the absence of interrupts, the
procedure which just called you can see anything you left on the stack, as long as it
hasn’t called any other procedures yet. This is sort of a curse, because it leads to
transient errors, rather than simply failing utterly every time you test it. Returning
pointers to local variables is a good problem to look for in code inspections.

As a rule, the best time to create tasks, or any other system resources, is on a
system restart. On any real-time critical system that may run for years without
taking a break, it’s better to have a reusable pool of each resource type that’s a bit
bigger than you need, than to keep allocating and freeing resources. The same
applies to memory allocation. (See the Memory Manager pattern in Chapter 3.)
M1 software mostly follows this guideline, but the problem is that we use some
third-party software that doesn’t. In particular, the TCP/IP stack and the ORB
both do dynamic mallocs and task creation, and have therefore caused some
performance problems and memory leaks.

The old SL-1 code now runs as a single self-contained VxWorks task, tSL1.
Within this task, WORKSHED schedules the SL-1 transactions as if they were being
handled by a number of separate tasks. See the next chapter for details.

Version 1.1 Part III: Software Architecture

1.2.1.1 Task state transitions
VxWorks allocates CPU time to tasks in a very predictable manner. Except
during interrupts, the highest priority task that’s been in the ready state longest is
always the one running. When application code or an Interrupt Service Routine
(ISR) does anything that might make a higher priority task ready to run (such as
giving a semaphore) the corresponding kernel subroutine ensures that the right
task will be run. All state transitions happen as a side effect of kernel subroutine
calls by tasks or interrupt service routines. If two or more tasks have the same
priority level, the tick ISR coordinates round-robin sharing among them.

TCB TCB TCB

TCB

TCB

TCB

TCB

TCB

timer expires

Pended Delayed

Suspended

Ready
Executing

TCB

delay()

highest priority
task in ready state trap or kill()

event happens (eg: semaphore released)

semTake(), etc.

(only this task is taking CPU time)

higher priority task
becomes Ready

When a task traps, it moves to “suspended” state. VxWorks provides a “delete
hook” option, which lets you invoke a procedure to do any necessary cleanup
whenever a task traps. Resources like file descriptors, semaphores, sockets, and
memory blocks are freely accessible among tasks. This flexibility means that our
coding policy must discourage indiscriminate sharing of resources. Since
VxWorks doesn’t, task code ought to keep track of any resources it owns and
free them using a delete hook. At the moment we actually restart the system for
tSL1, which is an effective if slightly heavy-handed way of ensuring that all
operating system resources are cleaned up.

You can end up giving a semaphore to a suspended task if you’re careless and
VxWorks won’t notice (but the watchdog probably will…).

Part III: Software Architecture Version 1.1

1.2.1.2 Task priorities
Priorities are assigned on a stable basis (with the new exception of tSL1). The
conventional wisdom is that this is fairly easy to tune and more efficient than
trying to compute algorithms like “run the task whose deadline is earliest”.

“Priority inversion” is when you have a high priority task waiting for a lower
priority task to complete its work. It can happen during semaphored sections,
but VxWorks provides a parameter, SEM_INVERSION_SAFE, in its semTake
procedure which will prevent inversion. The trick is to temporarily set the
priority of the running task equal to the highest priority task which is waiting.
See the VxWorks Programmer’s Guide for a clear example. We end up sort of
doing this manually for the SL-1 task because it doesn’t schedule its work queue
using VxWorks semaphores. Also be aware that message queues can suffer from
similar problems, which need to be planned around.

Task priorities are determined by black magic, but there are some heuristics to
help. In general, more important and shorter deadline stuff needs to be high
priority (closer to 0). It’s also generally better to have a server process running at
a higher priority than its clients. Even though VxWorks lets you, it’s usually best
not to change running task priority because it gets very hard to maintain
deterministic behavior.

Struggles with dynamic priorities
In Rls18, we wanted to get fair-share scheduling. We built it, but it interfered horribly
with the VxGDB debugger. Early versions went through and removed all breakpoints
on every task-switch interrupt, had a huge overhead, and sometimes artificially elevated
the priority of a pended or even suspended task. So although it was almost working,
we ripped it out before shipping. In Rls22, we redid it, but now at message interrupt
time, not on clock ticks. The goal is to have a transaction engine with priorities
appropriate to the current transaction. The Interrupt handler puts a priority on the
message in the queue, and the ISR changes the tSL1 priority to do proper priority
inversion. After another recent effort, we now change the priority of the tSL1 task
dynamically, again to try to match transaction priority with task priority. And yet
another effort went into Meridian Evolution. We’ll get there in the end…

Within each priority, we have enabled round-robin CPU sharing by calling
kernelTimeSlice. The problem is that then round-robin scheduling happens
within every priority (that is, all tasks at priority x will share time equally amongst
themselves, all tasks at priority y will also share time equally amongst themselves,
etc.). A more controlled but time-consuming way to accomplish something
similar is usually to call taskDelay(0) to swap explicitly with any other waiting
task within your priority. This would also allow you to determine when the swap

Version 1.1 Part III: Software Architecture

happens, and avoid things like tUsrRoot sharing with tExcTask in a non-
deterministic manner. On the positive side, our method is a cheap way to almost
get class-based scheduling. On the negative side, you have to make sure you play
nicely with other tasks at your priority level—don’t trample each other’s data.

The following is a catalog of the tasks running on a Meridian 1 switch, their
priorities, and a rough description of what each is for. Of course this list changes
over time, but it should give a sense of what’s going on. The “i” command from
the VxWorks shell will list the tasks running on any given load you’re interested
in.

Task Name Priority Purpose

[tUsrRoot] [0*] [the initial task: configures the system, spawns the
shell, then exits]

tExcTask 0* exception handling
tLogTask 0* message logging and output
tSwd 0 software watchdog
hiExcTask 1 additional exception handling for HI
tRstTask 11 restart logic: registers task starts, restarts,

deletes
tRpt 11 writes the report log to disk
tTimer 11 MAT: SNMP heartbeat task
tEvtColl 11 MAT: alarm management event collector
tEvt 11 "
tRdbTask 20* VxGDB host debugger task
tMMIH 21 MSDL/MISP interface handler
TimerThread 40 Mobility: ORB timer heartbeat task
tNetTask 50* task-level network functions
tOrbixd 50 Mobility: Iona’s ORB
tFtpdTask 55* FTP server
tTftpdTask 55 TFTP server
hiserv0 60 HI utility tasks, handles work q’d by HI ISRs
hiserv1 60 "
hiserv2 60 "
hiserv3 60 "
hiExcScan 60 scans for exceptions on HI-managed devices
cnipMon 60 monitors CNI ports
ipbMoni 60 monitors cards on the CPU backplane

Part III: Software Architecture Version 1.1

tTapeTask 60 tape emulation for legacy database interface
RootTmrMgr 80 Mobility: timer server task
tRlogInetd 100 rlogin daemon
tPortmapd 100* RPC port mapper
pdtLogin 100 direct (serial) PDT login monitor
pdtBrkTask 100 PDT breakpoint handler
tDTPreaper 100 old Data Transfer Protocol (should be

removed!)
tDTPlisten 100 "
BootpServer 150 Mobility: TCP/IP bootp server for EIMC
hifmon 230 HI hardware fault monitor
tod24 240 24-hour time-of-day, manages non-SL1

“midnight” audit jobs
tSNMP 240 MAT: Simple Network Management Protocol
tScriptMgr 240 MAT: maintenance windows
bootpSrvrd 240 Mobility: alternate bootp server (orb-based?)
mspServer 240 Mobility: Mobile Service Provider (call proc.)
tPRNT 240 MSDL/MISP card interface handler
thlpTask 240 overlay supervisor-accessible help feature
pdtShell01 240 direct-login PDT shell
tRlogind00 240 MAT: network login daemon
pdtShell02 240 MAT: network login PDT shell
tRlogchl00 241 MAT: network login PDT child
tAlarmLog 245 Mobility: alarm management
OAMSRV 245 Mobility: OA&M server
tSL1 250** The SL-1 code, basically all of call processing

 * VxWorks predefines these priorities
 ** the SL-1 task changes its priority depending on what it’s doing

Version 1.1 Part III: Software Architecture

Why is tSL1 the lowest priority task?
If the most important job of the PBX is call processing, you might expect tSL1 to be
much nearer to the top of the list. The problem is with WORKSHED, the SL-1 work
scheduler that acts as a mini-OS task manager. It controls a number of independent
activities, some of which are audits that run whenever there is nothing better to do.
These will take an infinite amount of time if they are allowed to do so, so nothing
with a lower priority than tSL1 can ever expect to get CPU time. To make call
processing work in spite of this, we sometimes try to change the tSL1 priority
dynamically, but the safest technique is to ensure that no other tasks take very much of
the total CPU time, and that what they take is split up into very short segments.

1.2.2 Interrupts
Interrupts are requests for urgent, short pieces of work to be done. They signal
the CPU to halt normal task processing (whatever the priority) and call the
routine pointed to by the interrupt vector table. They are predominantly used to
service hardware (clocks, device drivers, DMA) and handle exceptions (like the
bus errors caused by referencing illegal addresses).

If you have occasion to write an Interrupt Service Routine (ISR), there are a
number of special requirements to consider.

• Write very short, very fast, very clean code. Code inspect it thoroughly.
It’s extremely important that all interrupt code be very reliable. A bus error
will cause an ungraceful switchover or a warm restart.

• Don’t process a message in the ISR. Just enqueue it against task code, and
return. Do the processing as part of standard, prioritized task execution.

• Remember that there is no “context”. When you get called, the registers
contain things that are important to whatever code you’ve just interrupted.
If you’re doing anything at all complex (and you probably shouldn’t be!)
you’ll need a wrapper around your code:

Part III: Software Architecture Version 1.1

handler

Interrupt
Vector Table

Interrupt Service
Routine (ISR) wrapper

handler:

 change stack base
 save critical registers

 <your ISR code>

 restore registers
 restore stack base
 return from interrupt

vector number

Typically:
• reads & writes memory

mapped I/O registers
• write to memory
• write to a message queue
• semGive()
But never:
• printf()
• semTake()
• malloc()

hardware
signal

• Finally, remember that the MC68k series chips use the task stack for
processing interrupts, so people have to allocate enough space to handle
the worst-case nesting of interrupts on top of normal task recursion. If you
need a lot of stack space (and you probably shouldn’t) you should reset the
stack base to a safe area of memory that you have previously allocated, and
then restore it before returning.

1.2.3 Types of memory
At loadbuild time, VxWorks allocates three types of memory: text, data, and BSS.
“Text”, per Unix jargon, is where your executable code is stored. Data segments
contain text strings and other large constants. Blocks Started by Symbol (BSS),
are things like arrays and static C variables. Text and Data comprise the load file.
BSS is not loaded, but is zeroed out during the boot process.

The rest of the memory we use is allocated dynamically (via malloc), usually
during a restart. There is no simple way to allocate memory for use by a task in
such a way that it would automatically be deleted if the task goes away (although
if the task traps, and we go into a restart, all the unprotected memory is cleared
anyway ☺). Memory protection and restarts are covered in more detail in Section
5.3.1.

WARNING:WARNING: When different VxWorks tasks call the same procedure, they get the same
text, data, and BSS segments (unlike in Unix, where only the text segment is shared).
Their stacks will of course be different, so code reentrancy is possible but it’s not
automatic. (Speed is better than safety.)

Version 1.1 Part III: Software Architecture

1.2.4 Posix
Portable Operating System Interface for Unix (Posix) is the IEEE’s attempt to be
a universal, Unix-like Operating System API. VxWorks supports a Posix API
(along with many non-Posix extensions). If we used it exclusively, it would make
porting to some other operating systems almost effortless. However, it appears
at present as if some of the proprietary parts of the VxWorks API are too helpful
to ignore. But if you have the choice, stick with Posix.

1.2.5 Assorted VxTools
The following is a list of more-or-less useful tools available on VxWorks:

VxHelp gives detailed on-line help for the following stuff

the shell can interpret C code to query values of variables, etc., can also
set breakpoints (but usually use VxGDB)

moduleShow find out what VxWorks knows about a loaded module

lkup look up symbols containing a given substring

i,ti display information about one or all tasks

tt trace a task’s stack

s,so single step

b,bd,bdall set and remove breakpoints

l disassemble code

c,cret resume execution of a task

sp,td spawn or delete a task

ld,unld,reld load, unload, or reload a module, not usually used by us (try
patching)

timex,timexN times execution of a function

spy gives a task activity profile to see who’s hogging the CPU

WindView, Stethoscope Look useful, but not currently used much by us.
Maybe a good job for a coop?

Part III: Software Architecture Version 1.1

1.2.5.1 GNU source-level debug (GDB)
This tool is allows debugging of the C/C++ portions of the M1 software to be
debugged at the source-code level. It has a more limited ability to understand
SL-1 code, and is not available in the field.

See T00057, THOR High Level Debugger in Doctool library TOOLDOCS, or try
http://47.82.33.147/~mtvjbg01/SDE/GDB_MANUALS/Content.html

1.2.6 Compiled caveats
The following catalog of hints and warnings should prove useful to designers
doing any detailed interaction with the operating system:

• The shell does not understand symbolic macros (#define) so use grep to
find the corresponding value.

• The shell interprets all variables as 32-bit integers unless otherwise
specified.

• The shell doesn’t really understand data structures (use VxGDB).

• TaskIds are unique at any given point in time, but they get re-used when
the task dies!

• VxWorks does not check to see if a directory is valid on a shell cd

• Task variables cause context switches to be slower

• If you use semFlush to “catch up” all tasks waiting for a semaphore, the
semaphore state still does not go to full.

• Mutual exclusion semaphore’s may not be used in an Interrupt Service
Routine. Use intLock instead, but use it cautiously. intLock does not
prevent task context switching if you either block (eg: semTake, malloc, etc.)
or unblock a higher priority task (eg: semGive), and interrupts are unlocked
on every context switch.

• If you’re using a mutual exclusion semaphore (or writing an ISR for that
matter), don’t do any work which could be placed outside of the critical
region, don’t pend or delay, probably don’t even loop… This will help
avoid latency problems, deadlocks, and errors. To help this be true, you
probably want to put an API on the routines which access your critical

Version 1.1 Part III: Software Architecture

resource and initialize and manipulate the semaphores yourself rather than
having your client code manipulate them directly.

• Fast event occurrences can cause lost information if the task waiting on a
semaphore is not high enough priority. It is instructive to think through
the following example. If VxWorks is executing this code:

FOREVER
 {
 semTake (semId, WAIT_FOREVER);
 printf(“Got the semaphore\n”);
 }

then you will have the following behavior:
> semGive(Semid) à 1 message printed

 > semGive(Semid);semGive(Semid) à 2 messages
printed
 > semGive(Semid);semGive(Semid);semGive(Semid) à 2 messages
printed

If you increased the priority of the server loop, you would get the expected 3
messages printed, or you could use a counting semaphore.

• When using msgQreceive, if the message in the queue is 75 bytes long but
you only ask for 50, the remaining 25 bytes are lost permanently.

• Message queues end up copying the data in your message at least twice, so
keep messages smallish. For better performance (especially from an ISR)
consider putting pointers to the data into the message, rather than the data
itself.

• If you’re worried that you may not own all accesses to a critical resource,
you can use taskLock to protect your critical region, but again, keep it
short.

• To avoid deadlocks, try using only a single semaphore to protect resources
which will need to be accessed at the same time. Failing that, apply
semaphores in a strictly hierarchical, nested manner. That is, have a master
lock that controls access to the lower-level locks. Grab the master, try to
acquire the lower locks, and if one is unavailable, free all the locks you’ve
gotten so far. (This is of course a lock management transaction engine, and
is good general advice, rather than a VxWorks-specific trick…)

• malloc can be slow, and may even pend under certain circumstances.

• taskDelay is subject to drift. For more accurate task start intervals, try
wdStart with semGive, because this way your next timer is restarted during

Part III: Software Architecture Version 1.1

the ISR, rather than when your task actually gets to the front of the ready
queue.

• The Standard I/O Library contains macros as well as routines. As usual,
breakpoints can’t be set in macros.

• Mobility, SMP, ISDN, QSIG, MMIH, and ICCM all now use the OS heap.

1.3 High availability: Our modifications to VxWorks

1.3.1 Robust memory
One of our first extensions to the VxWorks platform allowed us to engineer what
sort of memory gets used to handle different things. The following details
change with every generation of hardware, but the considerations remain valid.
Most of the details are carefully hidden from application code by the platform
team.

Version 1.1 Part III: Software Architecture

Pe
rs

is
te

nc
e

Speed of Access
Slower Faster

survives
power loss

cache

flash ROM

report queue;
boot string

hard disk

survives
cold start

survives
warm start

totally
volatile

* Call Registers & ACD queues
 rebuilt in unprotected RAM
 after a warm start

Call Processor Memory Types

protected DRAM

unprotected DRAM*

protected SRAM

unprotected SRAM

survives
software
upgrade

boot ROM

The boot ROM amounts to a very short program that only knows how to find
and load the main software. It is shipped on the CPU board, and is never
expected to change. It must be short enough that it is provably correct; it more
or less can’t be fixed.

Flash ROM is relatively cheap, very stable, and fairly fast to read. Write access
is slow and awkward. It turns out to be a good place to put the executable code,
but it does make patching a hassle. It also makes it hard to set breakpoints
(although in the lab we don’t usually put the code into flash). We use the MMU
to do set patches and breakpoints, temporarily mapping what should be a flash
address to a spot in RAM. Because you always want a complete, valid copy of
the OS somewhere, flash is duplicated, and we only update one side at a time.

Dynamic Random Access Memory (DRAM) is cheap, and access is fast. On
redundant machines, there is a complete DRAM bank associated with each CPU.
The active CPU updates its DRAM, and the Changeover Memory Bus (CMB)

Part III: Software Architecture Version 1.1

ASIC copies these updates to the other DRAM. Besides the cost of the
hardware, there is also a 2× performance cost on writes to shadowed DRAM.

The report queue is required after a restart so that you can reconstruct what went
wrong. The boot string is a series of parameters that help the boot ROM
determine what the best place to find the boot image is likely to be. Both are
stored in a magical area of DRAM that is not trampled during a restart or even a
reboot.

Static RAM (SRAM) is not as cheap, but is faster than DRAM. We often
provide at least a small amount of SRAM to try to improve system performance.
With the right tools, it is likely that we could get better performance from our
existing hardware by carefully tuning what we put into SRAM.

Finally, there is usually on-chip cache, and sometimes nearby L2 cache, for both
executable code and data. Cache is flushed at run time on a simple least-recently-
used basis. Because our code tends to branch around an awful lot, we typically
choose very short line sizes for the cache. Even so, neither data nor program
store caching is as effective for us as it is for some types of problems. The
current cache is write-through, and takes roughly 7 times as long to write as to
read.

A hard disk or other commercial mass storage system is sometimes used to store
things like the customer database. Disks are very cheap memory, but access time
is non-deterministic, because it depends on things like where the disk heads are,
so we can’t use them to store data we need in real time.

A further level of reliability, already discussed in Chapter 2, is provided by using
the MMU to make certain areas of RAM protected against inadvertent
corruption. We require people to explicitly unprotect data, change their variable,
and then reprotect it. Of course, during this window, they are also free to
trample anybody else’s protected memory, so it is very important that they put
some care and attention into this part of their code. The unprotect/reprotect
sequence costs a bit of real-time on writes, but there is no extra cost for reads.
As a rule of thumb, state data (like Call Registers) that is subject to constant
churn is in unprotected memory, while configuration data (like the customer
database) is in protected memory. More surprisingly, we also store analog trunk
states, which change constantly, in protected memory. This apparent eccentricity
is to ensure that we don’t end up hanging these trunks over a restart.

Protected memory isn’t handled very easily for third-party software—if it needs
to update protected memory, we have to turn off memory protection globally,
invoke the third-party software (which may be interrupted by higher priority

Version 1.1 Part III: Software Architecture

tasks), and turn protection back on when it returns, which is obviously a bit
unsafe.2

2 This caused a major performance problem for Meridian Evolution, when the hardware changes forced

a change in our memory protection software. Essentially, where UNPROT had once meant “toggle a bit
on the processor board”, it now meant “scan through the MMU table and toggle the setting for all
pages that are currently protected”. This in turn slowed restarts, which do a lot of protected memory
updates, down to a crawl. It’s an example of the dangers of using the wrong algorithm in a low-level
routine. The eventual solution was to use a pair of memory protection maps: one with some pages
protected, and one with everything unprotected. Then when UNPROT is called, simply swap out the
real table.

Part III: Software Architecture Version 1.1

1.3.1.1 CP memory layout
The detailed layout of memory on our machines is very dependent on node type,
number of telephones, hardware generation, type of SIMMs installed, and
software version. The following picture, based on the first Meridian Evolution
release, is presented only to convey a general sense of what’s out there.

BSS: 3 Mb
(Blocks Started by Symbol)

DRAM

copy of Data: 1.6 Mb

Reserved by OS: 2 Mb

protected heap:
≈6 Mb

unused

unprotected heap:
≈10 Mb

flash ROM
(allocated and initialized

at loadbuild time)

Text: 28 Mb
(executable code)

unused

Data: 1.6 Mb

SL-1 task stack
MMU context data

SRAM
unused

The most recent detailed memory layouts are available from the performance
group in Mission Park. At the time of printing, the best document was
probably Marjie Hempstead’s Meridian 1 System Capacities, X11 Release 23,
in Doctool library SL1DOCS, although Inside Thor also has some good details
up to CP2.

1.3.1.2 Conjuring with bad pointers
If somebody tries to write to Flash ROM, we ignore it. The theory is that our
only easy alternative would be to trap, and do a warm start. What has probably
just happened is that somebody has dereferenced an uninitialized local pointer.
Locals are stored on the stack, and one of the most common other things to find
on the stack is a return address, which is just a pointer to program store, which is
in Flash.

Version 1.1 Part III: Software Architecture

Now of course the phone call in question will probably not behave the way the
designer would have wished. If the purported pointer was supposed to refer to
any very interesting data, the odds are that the subscriber will end up having to
hang up and redial, but at least we didn’t cause the switch to restart.

A related trick is called “pointer remapping”. If we attempt to write to a totally
invalid address, we catch the exception, map that address to a special area of
RAM, and store the value there. Subsequent writes or reads at the same bad
address will also be caught, and we will return the value we put there. If the first
bad reference is a read, we set up the mapping and return zero. The alchemy sort
of works. We take bad code and may make it function correctly. Of course, it’s
still bad code. We do generate a record of the problem and encourage people to
debug their pointer setup, but it does provide complete symptomatic relief some
of the time.

While both of these tricks prevent outages in the field, they also mean that fewer
bugs get noticed (and fixed). It’s a philosophy predicated on living with bad
code, rather than working towards perfect code. We might be better off to hide
the errors only in the field, so that at least in the lab we get the failures that force
us to investigate the errant code.

bad code

pointer alchemy apparatus

Functionalbad code

We may soon stop doing pointer remapping. Instead, a bad SL-1 pointer would
signal a longjump back to the start of the WORKSHED loop. Other tasks would be
killed and restarted after suitable information has been captured (see
Requirements Specification for Exception Processing on the Platform Team’s
home page— http://47.82.33.147/projects/OSEvolutionSite/).

Part III: Software Architecture Version 1.1

1.3.1.3 Virtual memory

Wind River on Virtual Memory
The VxWorks belief system holds that:

1) all threads shall run in a single flat virtual address space, and

2) the OS shall be “just a collection of libraries” that an application links to as if
they were any other libraries.

By having a flat address space, addressing is faster generally, and in particular caching
may be more efficient across context switches by allowing you not to flush the cache.
As with most embedded systems, VxWorks provides no true virtual memory. That is,
you can’t swap pages to disk to fake a bigger more usable memory than the RAM you
actually have. Virtual memory is nice for desktop systems, especially when the cost of
1M of RAM is much greater than the cost of 1M of disk swap space, but it leads to
slower, non-deterministic performance. So the conventional wisdom is that you would
never want VM for an embedded system (although this is exactly what the original
SL-1 did with “overlays”, because they are the non-real-time side of our real-time
system).

We do sometimes use a form of virtual addressing to implement our patching
strategy. Because the code is running in flash ROM, which we can only change
in 256K chunks, we don’t do in-line patching. Instead, we put the patches into
regular data store, and then tell the MMU to make sure we execute the patched
version of the procedures.

At several times during the history of development, the amount of available
memory has been extremely tight, or CP performance has been bounded by
memory throughput. Both problems have led to people going to a lot of trouble
to optimize memory usage, and this shows up in some densely-packed, multiply-
overlaid structures, such as Call Registers.

1.3.2 Robust mass storage
Commercial disks are cheap and already fairly reliable,
but we also sell redundant disk configurations (sort of
minimalist RAID systems) to ensure that customers’
databases are preserved. Of course, this is no
protection whatsoever against either bad software
corrupting the image before it gets saved, or operator

Version 1.1 Part III: Software Architecture

error. (“Dang! I just deleted the master archive file again…”) The Mass Storage
Redundancy (MSR) feature allows duplication of either directories or files, so that
methodical organization can prevent such catastrophes.

The M1 hard drive is partitioned into three directories: /p, /u, and /id0. These
contain protected files (software, firmware, default database files, report data text
file, script file, non-customized files); unprotected files (database files, error
reporting files, patches, files generated by the system during run-time, customized
files); and card id files, respectively.

The report log tracks the operation of the system, and records any abnormal
conditions. A typical file would contain records like the following:

 500 : SRPT0770 TOD 1: Midnight job server starts on side 1
 Number of jobs to do: 2 (15/9/93 2:00:00.975)
 501 : SRPT0773 TOD 1: Starting midnight job ‘rstThr’ (15/9/93 2:00:00.979)
 502 : SRPT0773 TOD 1: Starting midnight job ‘pchMidNite’ (15/9/93 2:00:00.981)
 503 : SRPT0774 TOD 1: Midnight jobs completed on side 1 (15/9/93 2:00:50.487)
 504 : CIOD0157 CMDU 1 is ACTIVE, RDUN is ENABLED (15/9/93 2:12:02.516)
 505 : HWI0009 HI FS: saving data to directory “/u/db/hi_bak” (15/9/93 2:13:01.133)
 506 : CCED0760 SWO 1: Graceful switch-over to side 0 requested (15/9/93 3:14:46.615)
 507 : HWI0003 HI Init: Graceful SWO Start continues on side 0 (15/9/93 3:14:24.647)
 508 : HWI0004 HI Init: Phase 5(“objects link”) begins (15/9/93 3:14:24.647)
 509 : HWI0004 HI Init: Phase 7(“objects enable”) begins (15/9/93 3:14:24.092)
 510 : HWI0007 HI Init: SWO Start complete at side 0 in 0 seconds (15/9/93
 3:14:25.674)
 511 : CCED0762 SWO 0: Graceful switch-over to side 0 completed
 Previous Graceful SWO: at 14/9/93 3:15:03 (15/9/93 3:14:25.861)
 512 : BERR0705 EXC 1: Bus Error in Task “tSL1” (0x4710000)
 SR=0x3000, PC=0x46d758a, Addr=0x1670fc40, SSW=0x074d (14/10/93 14:32:27.663)

 etc.

Unlike some call processing systems, we do not use our disks to store Call Detail
Records as they are generated. Instead, they are buffered (using CR data blocks)
until they get shipped to an off-board processor, usually over a narrowish-band
dialup port. We have had systems run out of buffers because the port speed
(eg: 1200 baud) was too slow to keep up with their call traffic, and this caused
the extra CDRs to be tossed. There is an opportunity to improve on this,
especially in the low end of the market. On large systems, it’s probably just as
well that we process off board.

For a more detailed description of the Core Multiple Drive Unit (CMDU)
layout, see Inside Thor.

1.3.3 Watchdogs
As discussed in Chapter 2, a watchdog is a timer designed to detect deadlocks,
infinite loops, and other situations where the switch “hangs”. Each board has a
hardware watchdog timer on it. The watchdog hardware simply counts down to

Part III: Software Architecture Version 1.1

zero, and as soon as it gets there it signals a switchover (on redundant nodes) or a
cold restart. What keeps this from happening is that the software watchdog task,
which runs at priority 0, and loops continuously like this:
 DO FOREVER
 check_that_all_tasks_are_healthy;
 2_second_delay à hardware_watchdog_timer;
 DELAY(less_than_2_seconds);

Because the software watchdog runs at the highest task priority, we know that if
the hardware watchdog time expires ever, no software is running.

The software watchdog also keeps track of how long other tasks are running, and
may trigger a warm restart if it thinks there is a problem.

1.3.4 Restarts
When things go badly wrong (a task traps, too many pointers are remapped, a
watchdog timer expires) we can’t just halt and display “An unexpected error has
occurred” on all the phones. Most people don’t even think of a PBX as a
computer, and they have no patience for the sort of bugs they have learned to
expect from computers. As mentioned in Chapter 2, what we usually try to do is
restart the system in some way, but causing the minimum amount of disruption
needed to fix any particular fault. There is a progression of restart types
available, and if the first type doesn’t fix the problem, we’ll usually move on to
the next.

1.3.4.1 Task restarts
Individual VxWorks tasks can be created and killed independently. As with all
resources, we prefer to do this only at the time of a system restart, but there are at
least two other times it happens. The first is that if a new user logs in, a task is
created to serve the terminal, and this task is deleted when the user logs out. The
other major case is when a task dies violently. Under normal circumstances, we
would then recreate the task immediately.

Until recently, this applied to the SL-1 task. That is, if tSL1 choked or if the
software watchdog expired, we would recreate the task, call WORKSHED which in
turn would call INITIALIZE to set up all the dynamic call processing data
structures, and carry on. This was known as an “init”, and used to be the fastest
of the various M1 restart types. tSL1 task restarts have recently been disabled
because we had trouble keeping the state data synchronized between the newly-
initialized SL-1 code and all of the other tasks, but they may return again in the

Version 1.1 Part III: Software Architecture

future. For now, we just go straight to a warm restart, although the other tasks
can still be restarted individually.

1.3.4.2 Warm restart
Warm restarts happen if the manual reset button on the CP card is pressed, an
interrupt handler traps, or we get too many pointer remaps. We restart the
operating system, which means that all of the unprotected data gets deallocated,
including the Call Registers. We then run the initialization code in SL-1 module
INIT, which sets up all of the basic SL-1 data structures and then queries the
network connection data to set up the appropriate CRs. This process does not
manage to recreate all of the subtleties of call feature data, but basic POTS
behavior is preserved. Calls which were not in a talking state (and thus had no
network connections) are dropped. No new call processing transactions are
processed until this phase has been completed.

Warm restarts also now rebuild the ACD queues, using some unprotected data
that is salvaged before the operating system gets a chance to clear it.

WARNING:WARNING: Protected data survives a warm restart, but unprotected doesn’t. It is
critical that we never allocate protected data and try to remember where it is with an
unprotected pointer. On the next warm restart, we’ll lose the pointer. Of course, if
we reverse this (using protected pointer to unprotected block of memory), we’ll end
up with a dangling pointer. This at least can be fixed, by allocating a new unprotected
block, but we have to remember to do so.

1.3.4.3 Cold restart
This is part of our normal software install sequence, although it may also happen
if the hardware watchdog expires, the CP card is reseated, or its manual reload
button is pressed. SYSLOAD reloads the database (and on non-flash machines, the
code too), usually from a hard disk. Unsaved database changes are lost, and all
calls are dropped. We then run roughly the same code as we would for a warm
restart, but without the call-reconstruction phase.

A cold restart takes roughly as long as a warm one, but has a more severe impact
on the customer. Calls are taken down, and any unsaved database changes are
lost. On the other hand, it almost always clears any memory corruptions.

If this cold restart is happening because the power has just been turned on, then
there is one extra step. In this case, the very first thing we do before restarting
the operating system is to write an “uninitialized store” pattern across all RAM,
to set up memory parity. The reason this was important was that when we

Part III: Software Architecture Version 1.1

ported to Thor, we discovered that several pieces of code were reading from
memory before writing, which (apart from yielding meaningless results) would kill
the restart. Since debugging a switch that won’t come up is horribly difficult, this
workaround was put in place.

1.3.5 Dual CPUs

1.3.5.1 Hot standby
Call Processor 0

cache

SRAM
0

DRAM
0

flash
ROM

0

CPU 0

Call Processor 1

cache

SRAM
1

DRAM
1

flash
ROM

1

CPU 1

CMB

Network
Equipment

0

Network
Equipment

1

Peripheral
Equipment

Larger M1 systems are shipped with dual Call Processor cards. Either CPU is
powerful enough to drive the whole system, and each is connected to all
peripherals. The backup CPU is held in reset state, and is not actually running.
The inactive DRAM bank is kept in sync with the active one by the CMB ASIC.

1.3.5.2 Graceful switchover
The hot-standby CPU is normally stopped. Therefore “you don’t know if it
works”. Our customers actually invoke graceful switchover periodically (some
are rumored to do it all day long, although once a day might be more typical) to
ensure that the redundant cable paths and CPU are all still okay, just in case they
need to do a real one.

Graceful switchover also happens under minor failures, if it appears that the
CPU is healthy but the related components are not, such as IOP/IOC faults,
CMDU faults, and memory parity faults.

Since graceful switchovers happen at a time when the switch is essentially
healthy, it is reasonable to take a bit of time to prepare first, but the actual out-of-
service hit to the switch must be minimized. On M1, there is currently a pause of
about ¼ second, and no calls are dropped.

Version 1.1 Part III: Software Architecture

The text segment (code) lives in flash ROM, which is duplicated, so you don’t
have to copy it. The patches do have to be re-applied on the new side. The data
segment, both protected and unprotected, is mostly sitting in the reflected
DRAM, so it’s also available on the new side. The SL-1 stack, MMU context,
exception vector table, and interrupt stack are in SRAM, and need to be copied
across before resuming processing.

To switch over, we mask out all interrupts3 to freeze the state, copy the stack and
register state, reinitialize the devices (preserving IP addresses and physical device
states as much as possible), and effectively do what looks like a return from
interrupt to get things going again.

The “reflective-memory” system makes switchover fast (the outage is about a
second), but we don’t really want to build another one because it interferes with
porting the OS and the performance of the system. Various vendors4 are helping
us look at supporting reflective memory without fancy duplex buses, using off-
the-shelf hot-swappable compact PCI boards, and then providing automatic
failover.

1.3.5.3 Ungraceful switchover (failover)
If the hardware watchdog expires, we suspect hardware problems and force a
switchover to the backup CPU. There’s no point spending time getting the other
side ready; just switch CPUs and get back in service as fast as possible. Since we
know there’s some kind of fault in this circumstance, we do a warm restart on the
new side in the hopes of clearing it. On M1, we currently take about 30 seconds
to do an Ungraceful Switchover, and all calls that aren’t in a talking state are
dropped.

1.3.5.4 Split mode
In the lab, we allow redundant machines to be run split to double the number of
test environments available to designers. This does not affect most application
level software, but only one side gets to use the networks.

3 Our flag should have been a readers/writers semaphore, but we never managed to get that going, so it’s

a straight semaphore.
4 At least Chorus, Tandem, and Sun, and probably others before we’re done…

Part III: Software Architecture Version 1.1

1.3.5.5 Software delivery
We also use split mode to deliver new software loads to the field. The basic idea
is that we split the switch, load the new software onto the inactive side, and do an
ungraceful switchover to the new side.

In the primordial SL-1 software release process, the Integration Control Team
used Overlay 43 (Datadump) to write the database out onto a tape containing the
new software release. Next, they would change the jumpers on the Mass Storage
Interface (MSI) board to tell it to boot from tape (or later, floppy) instead of from
the hard drive. They would then reset the standby side, booting from this new
tape. As part of the boot process, SYSLOAD converted the customer data to the
new format where necessary. Once the standby side was ready to handle calls, an
ungraceful switchover would be initiated, and after a brief outage the switch
would start processing calls with the new software. The previously-active side
could then be loaded from tape and made ready to act as the new standby. This
process was one-way (you couldn’t convert the new database into the old format
if you wanted to back out later) but you always had the option of rebooting to a
previously saved backup image if things went badly wrong. Also, until you had
brought the old side back to hot-standby mode, you could cut back to the old
load in a hurry if things looked bad on the new side.

There is still a vestigial tape emulation system (some like to call it an
“abstraction”) at the heart of the evolved software delivery system even though
we haven’t had any real tapes for years. And there is still a datadump “overlay”,
even though it is always resident in RAM. In CP1, we’ve shipped on floppies,
and used a utility to load the new software onto the hard disk, and only ever
booted from there. Since CP2, the image we normally boot from is in Flash
memory. In the near future, most customers will probably have new loads and
patches shipped to them over the Internet.

On a single-CPU system (Options 11, 21A, 21, 21E or 51), the process is similar,
but you get a total outage during the reboot/rebuild process.

1.3.6 Packaging
With Thor (in particular with Option 11C), we started shipping the whole
software load to all sites. Prior to that, unpurchased software was optimized out
of the load, and you had to get a new cartridge if you wanted to install another
package. Now everything except mobility is there, but some is deactivated. If
you purchase a new feature, we tell you a magic “key code” which you can use to

Version 1.1 Part III: Software Architecture

enable the software. This means switches need a bit more memory, but
customers don’t need to wait for us to ship them new packaged loads.

1.3.7 Tools

1.3.7.1 Patching
If serious bugs are detected in a load which has already been shipped, we need a
way to fix the installed loads, sometimes with some urgency. Historically, we had
a very narrow bandwidth to switches in the field (especially outside of North
America), so we couldn’t afford to send a large chunk of object code each time
(and in particular we couldn’t just send a new image file). In any case, we would
usually be dealing with a customer who was already unhappy, so we couldn’t
disrupt their system further just to fix the problem. We didn’t want the cure to
seem worse than the disease.

The required magic is performed roughly as follows. We figure out the required
software update using standard lab tools. We compile and link the module(s),
producing a new load file. Using a variety of tools, this gets built into a patch
file, which is transmitted down to the site. There the patch is loaded into RAM,
and the MMU is told to map calls to the old procedure (usually in flash ROM) to
the new location. Thus we can alter the software with no interruption to call
processing, even on a single-CPU system.

The downsides are that the patched code is more error prone (because it can’t be
tested as thoroughly and is often written under time pressure); that it runs more
slowly (because it is not in flash); that it must be re-applied on cold restarts and
switchovers; and that there is some extra administrative overhead. All of this
means that we want to keep the total number of patches small.

T00116, the Thor Patcher Users Guide, is in Doctool library TOOLDOCS or on
the web at http://47.82.33.147/~raviyer/TOC.htm. The Meridian Patch Library
reference guide is on the web at http://47.58.130.173/BIG/MPL/mpl.pdf.

1.3.7.2 Problem Determination Toolkit (PDT)
PDT is the low-level debugging utility built by the Thor team. There are a
number of existing documents describing how to use it.

Try F02824, Thor Lab User’s Guide and F03226, Thor Technical Notes in
Doctool library MLVDOCS, or the Debugging Techniques chapter of Inside the

Part III: Software Architecture Version 1.1

Option 11C at http://47.75.6.2:8080/common_cts_info/PDF_Files/Inside_Opt11C.pdf.

1.3.7.3 sl1Spy, sl1qShow, systat, memShow, segPctShow
These tools check on the overall health of the system, and are particularly useful
for debugging platform issues.

Inside Thor has a reasonable description of these tools, and they also have on-
line help.

1.4 Maintenance frameworks
On top of the platform, or maybe surrounding the applications, we need a
general purpose maintenance framework to help manage system. In the earliest
days of SL-1, when the OS was not separated out, this framework was impossible
to think about in any isolated way.

With the Thor project, we not only added the VxWorks OS, but the first
generation maintenance framework, called the Hardware Infrastructure (HI).
This is discussed in more detail in the Management chapter.

The following (now cancelled) generation used OO technology to take this a step
further, creating the System Infrastructure (SI), which is covered in the Meridian
Evolution chapter.

1.5 Intrinsics
Intrinsics were originally sort of indexed assembler language subroutines that
either had to be blindingly fast or had to do things (like access I/O mapped
addresses) that were hard to code in SL-1. These days they are all normal C
subroutines.

1.5.1 Hardware intrinsics
These define our interface to the real hardware, eg: IOREAD. They are defined in
module intr.c. Because they isolate most code from the details of hardware
implementation, they make the job of porting between platforms somewhat
easier.

Version 1.1 Part III: Software Architecture

1.5.2 Software intrinsics
These are mostly code we knew would be called a lot, which needed to be extra
speedy, eg: TNTRANS. Until Thor, all intrinsics lived in ROM, and ran a bit faster
than the rest of SL-1. Now all software is in flash ROM, but the software
intrinsics are still a bit faster by virtue of being written in carefully tuned C rather
than SL-1. They are defined in module swintr.c.

1.6 Third-party extensions to the platform
In Release 22, we stopped supporting the old bit-slice processors, and this
allowed us to start experimenting with third-party software. Most of this ends up
living between the previously existing operating system and the application code.
The major pieces are:

• Orbix: an Object Request Broker from Iona, used for Mobility.

• Seaweed: a memory management system to keep Orbix from fragmenting
the RAM. It overloads standard functions like malloc with its own
versions (see Memory Manager in Chapter 3) so you don’t have to do
anything special to take advantage of its improvements.

• RogueWave: a broad spare-parts library of C++ classes, mostly for MAT,
although Meridian Evolution would have used it too. See the book
Tools.h++, Foundation Class Library for C++ Programming from RogueWave.

• Envoy: a Simple Network Management Protocol (SNMP) stack from
Epilogue Technology, used mostly for MAT.

• Retix: an ASN.1 encoder used by Envoy.

1.7 Distributed processing
Intelligent Peripheral Equipment cards were developed to distribute more of the
system's processing to its peripheral hardware. To allow for a flexible evolution
of and ease of support for this distributed system, the ability to download
microprocessor software into RAM for these cards is preferable to restricting
software storage only to ROM. Existing cards which can do this are XNET,
XPEC, and XNPD. The strategy calls for simple peripheral software, unaware of
call state (eg: “dialing”), although it does understand terminal state (eg: “idle”).

Part III: Software Architecture Version 1.1

The peripheral is a slave to the feature logic in the core CPU, and its software is
version-coupled with it.

Two new cards, MISP and MSDL, will follow the same path. One major
enhancement that will be made for these new cards is the ability to store
downloaded software in flash ROM on MISP/MSDL cards themselves. This
will eliminate the requirement for downloading in the event of loss of power to
the card, which will reduce the time required to bring up the cards to functional
state.

We don’t yet have any way of doing symmetric load-sharing between multiple
CPUs, although we are discussing some possibilities.

1.8 Evolving the platform
The Call Server Evolution project is actively considering a major new platform,
probably based on an Intel CPU, which among other differences is little-endian5.
There is no generic way to write software that is both completely machine-
independent and maximally efficient. As an application designer, what should
you do?

The vast majority of differences in the first generation of a porting exercise will
be taken care of by the compiler. This is still a big deal, especially with respect to
support tools like source-level debuggers and patchers, but most designers can
ignore it. The OS differences are likely to be masked if you’ve been writing to
POSIX all along, but there is a chance that there will be performance problems,
and new bugs (or at least subtly different interpretations of standards) so
thorough testing is a must. SL-1 should mask the bit/byte/word packing
differences, except for two important cases. The first is that booting from an old
database could be an issue. This will usually be covered because we save a text

5 According to the hacker jargon file, this excellent term derives from Swift's “Gulliver's Travels” via

the Danny Cohen’s famous paper “On Holy Wars and a Plea for Peace” [USC/ISI IEN 137, April 1,
1980]. The Lilliputians, being very small, had correspondingly small political problems. The Big-
Endian and Little-Endian parties debated over whether soft-boiled eggs should be opened at the big
end or the little end. “Big-endian” now describes a computer architecture in which, within a given
multi-byte numeric representation, the most significant byte has the lowest address (the word is stored
“big-end-first”). Most processors, including the IBM 370 family, the PDP-10, the Motorola
microprocessor families, and most of the various RISC designs, are big-endian. Intel chips are little-
endian. There’s a theory that mathematicians naturally think of the least significant bit as bit zero, and
want it stored on the right, while engineers naturally count from the left starting at one. The main
thing is to agree, and capture it in your design documents!

Version 1.1 Part III: Software Architecture

file, which will automatically be converted, so you only have the usual version-
dependence problems to worry about. The second case is when the CP is
messaging to other processors, and this will need explicit planning to get right.

platform.doc DRAFT

Printed 11/13/98 at 3:01 PM Page 35

